A Machine-Learning Model using MRI-based Radiomic Features to Predict Primary Site for Brain Metastases
نویسندگان
چکیده
منابع مشابه
Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملBody Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملUsing Machine Learning to Predict Human Brain Activity
Brain imaging studies are geared towards decoding the way the human brain represents conceptual knowledge. It has been shown that different spatial patterns of neural activation correspond to thinking about different semantic categories of pictures and words. This research is aimed at developing a computational model that predicts functional magnetic resonance imaging (fMRI) neural activation a...
متن کاملMachine Learning methods for Quantitative Radiomic Biomarkers
Radiomics extracts and mines large number of medical imaging features quantifying tumor phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection methods and twelve classification methods were examined in terms of their performance and stability for pred...
متن کاملProstate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches
Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response. Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Radiation Oncology*Biology*Physics
سال: 2019
ISSN: 0360-3016
DOI: 10.1016/j.ijrobp.2019.06.2186